Computational fluid dynamics modelling of left valvular heart diseases during atrial fibrillation

نویسندگان

  • Stefania Scarsoglio
  • Andrea Saglietto
  • Fiorenzo Gaita
  • Luca Ridolfi
  • Matteo Anselmino
چکیده

BACKGROUND Although atrial fibrillation (AF), a common arrhythmia, frequently presents in patients with underlying valvular disease, its hemodynamic contributions are not fully understood. The present work aimed to computationally study how physical conditions imposed by pathologic valvular anatomy act on AF hemodynamics. METHODS We simulated AF with different severity grades of left-sided valvular diseases and compared the cardiovascular effects that they exert during AF, compared to lone AF. The fluid dynamics model used here has been recently validated for lone AF and relies on a lumped parameterization of the four heart chambers, together with the systemic and pulmonary circulation. The AF modelling involves: (i) irregular, uncorrelated and faster heart rate; (ii) atrial contractility dysfunction. Three different grades of severity (mild, moderate, severe) were analyzed for each of the four valvulopathies (AS, aortic stenosis, MS, mitral stenosis, AR, aortic regurgitation, MR, mitral regurgitation), by varying-through the valve opening angle-the valve area. RESULTS Regurgitation was hemodynamically more relevant than stenosis, as the latter led to inefficient cardiac flow, while the former introduced more drastic fluid dynamics variation. Moreover, mitral valvulopathies were more significant than aortic ones. In case of aortic valve diseases, proper mitral functioning damps out changes at atrial and pulmonary levels. In the case of mitral valvulopathy, the mitral valve lost its regulating capability, thus hemodynamic variations almost equally affected regions upstream and downstream of the valve. In particular, the present study revealed that both mitral and aortic regurgitation strongly affect hemodynamics, followed by mitral stenosis, while aortic stenosis has the least impact among the analyzed valvular diseases. DISCUSSION The proposed approach can provide new mechanistic insights as to which valvular pathologies merit more aggressive treatment of AF. Present findings, if clinically confirmed, hold the potential to impact AF management (e.g., adoption of a rhythm control strategy) in specific valvular diseases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of transesophageal echocardiography in detecting cardiac sources of emboli in ischemic stroke patients

  Background: Embolus is one of the causes of ischemic stroke that can be due to cardiac sources such as valvular heart diseases and atrial fibrillation and atheroma of the aorta. Transesophageal echocardiography (TEE) is superior in identifying potential cardiac sources of emboli. Due to insufficient data on TEE findings in ischemic stroke in Iran, the present study was done to evaluate TEE in...

متن کامل

Percutaneous Left Atrial Appendage Closure: is there a Role in Valvular Atrial Fibrillation.

Atrial fibrillation, a chronic and highly morbid cardiovascular condition which affects over 33 million people worldwide, can be broadly categorized as valvular vs non-valvular in etiology. However, definitions of valvular atrial fibrillation have varied widely in the literature, and there is no clear consensus definition to date. Historically, patients with atrial fibrillation in the setting o...

متن کامل

Fluid dynamics of heart valves during atrial fibrillation: a lumped parameter-based approach.

Atrial fibrillation (AF) consequences on the heart valve dynamics are usually studied along with a valvular disfunction or disease, since in medical monitoring, the two pathologies are often concomitant. Aim of the present work is to study, through a stochastic lumped-parameter approach, the basic fluid dynamics variations of heart valves, when only paroxysmal AF is present with respect to the ...

متن کامل

Clinical Significance of P Wave Dispersion in Prediction of Atrial Fibrillation in Patients with Acute Myocardial Infarction

Background: P wave dispersion (PWD) is defined as the difference between the maximum P wave duration (Pmax) and the minimum P wave duration (Pmin) in 12-leads of the surface electrocardiography. The aim of this study was to evaluate the values of PWD during atrial fibrillation (AF) after acute myocardial infarction (AMI). Methods: We prospectively evaluated atrial rhythms of 350 patients (251 m...

متن کامل

Investigating the Effect of Inflammation on Atrial Fibrillation Occurrence by Measuring Highly Sensitive C-reactive Protein (hs-CRP)

Introduction: Atrial fibrillation (AF) is the most prevalent cardiac arrhythmias that cardiologists and internists encounter. The goal of this article is to clarify an overview of the evidence linking inflammation to AF existence, which may highlight the effect of some pharmacological agents that have genuine potential to reduce the clinical burden of AF by modulating inflammatory pathways. Mat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2016